开启辅助访问
 找回密码
 立即注册

人工智能需要哪些高级的数学知识?

lxsj8 回答数2 浏览数124928
人工智能需要哪些高级的数学知识?
使用道具 举报
| 来自北京
丑凤凰 | 来自江苏
人工智能是目前学术界和工业界的技术新宠儿。今天的人工智能技术归根到底都建立在数学模型之上,要了解人工智能,首先要掌握必备的数学基础知识,具体来说包括:
1、线性代数:如何将研究对象形式化?
事实上,线性代数不仅仅是人工智能的基础,更是现代数学和以现代数学作为主要分析方法的众多学科的基础。从量子力学到图像处理都离不开向量和矩阵的使用。而在向量和矩阵背后,线性代数的核心意义在于提供了⼀种看待世界的抽象视角:万事万物都可以被抽象成某些特征的组合,并在由预置规则定义的框架之下以静态和动态的方式加以观察。
2、概率论:如何描述统计规律?
除了线性代数之外,概率论也是人工智能研究中必备的数学基础。随着链接主义学派的兴起,概率统计已经取代了数理逻辑,成为人工智能研究的主流工具。在数据爆炸式增长和计算力指数化增强的今天,概率论已经在机器学习中扮演了核心角色。
3、数理统计:如何以小见大?
在人工智能的研究中,数理统计同样不可或缺。基础的统计理论有助于对机器学习的算法和数据挖掘的结果做出解释,只有做出合理的解读,数据的价值才能够体现。数理统计根据观察或实验得到的数据来研究随机现象,并对研究对象的客观规律做出合理的估计和判断。
4、最优化理论: 如何找到最优解?
本质上讲,人工智能的目标就是最优化:在复杂环境与多体交互中做出最优决策。几乎所有的人工智能问题最后都会归结为一台优化问题的求解,因而最优化理论同样是人工智能必备的基础知识。最优化理论研究的问题是判定给定目标函数的最大值(最小值)是否存在,并找到令目标函数取到最大值 (最小值) 的数值。如果把给定的目标函数看成一座山脉,最优化的过程就是判断顶峰的位置并找到到达顶峰路径的过程。
5、信息论:如何定量度量不确定性?
近年来的科学研究不断证实,不确定性就是客观世界的本质属性。换句话说,上帝还真就掷骰子。不确定性的世界只能使用概率模型来描述,这促成了信息论的诞生。
信息论使用“信息熵”的概念,对单个信源的信息量和通信中传递信息的数量与效率等问题做出了解释,并在世界的不确定性和信息的可测量性之间搭建起一座桥梁。
6、形式逻辑:如何实现抽象推理?
1956 年召开的达特茅斯会议宣告了人工智能的诞生。在人工智能的襁褓期,各位奠基者们,包括约翰·麦卡锡、赫伯特·西蒙、马文·闵斯基等未来的图灵奖得主,他们的愿景是让“具备抽象思考能力的程序解释合成的物质如何能够拥有人类的心智。”通俗地说,理想的人工智能应该具有抽象意义上的学习、推理与归纳能力,其通用性将远远强于解决国际象棋或是围棋等具体问题的算法。








回复
使用道具 举报
dj311 | 未知
人工智能领域需要用到哪些数学
既然说的是数学,我觉得首先看切入点,如果是计算视觉,毕竟视觉是个很大的坑
1. 线性代数:
各种与线性代数相关的数学知识是肯定要掌握的。像当下大家习惯用张量来表示数据。
2.复变函数:
或者说信号与系统,图像中的滤波,相关数据的预处理,参考数字图像处理。
3.微积分:
这些是真的基础了,对其中的概念要熟稔于心,你会在无形之中用到,像机器学习很常用的loss的计算,你要在梯度下降的时候熟练的掌握各种目标函数的导数、偏导数和积分
4.概率论与数理统计:
这些都是非常基础的东西,像概率分布,KL距离等再往后面延伸还有信息论等内容它是更实用理论的基础。
5.最优化
在简单基础的应用场景下,我们希望机器学习能很好的对于事物有个归纳总结的能力,所以训练学习的过程有点像一台拟合过程,不用的应用场景对不同的目标进行优化所以肯定是基础再上一层所要具备的数学素养
6.凸优化
更进一步的优化应用
7. 组合数学
这是计算机行业的基本功
8.具体数学
一本书叫这个名字,同样应该作为通用计算机类数学基本功
9.时间序列分析
10.随机过程
回复
使用道具 举报
快速回复
您需要登录后才可以回帖 登录 | 立即注册

当贝投影