|
zhujinyan
| 来自北京
这是一台非常好的问题,作为一名科技从业者,我来回答一下。
首先,人工智能是一台非常典型的交叉学科,不仅涉及到数学,同时还涉及到计算机、控制学、经济学、哲学、神经学、语言学等多个学科,所以人工智能技术不仅难度较高,知识量也非常庞大,这也是为啥长期以来,人工智能人才的培养都集中在研究生教育领域的重要原因。
人工智能当前有六个大的研究领域,包括自然语言处理、计算机视觉、机器学习、知识表示、自动推理和机器人学,这些研究方向都离不开数学知识,所以要想在人工智能的研发领域走得更远,一定要有一台扎实的数学基础。
以机器学习为例,机器学习的步骤包括数据收集、算法设计、算法实现、算法训练、算法验证和算法应用,所以机器学习的基础是数据,而核心则是算法,所以也可以把机器学习问题看成是一台数学问题。机器学习在人工智能领域的应用非常广泛,所以很多初学者在进入人工智能领域之前,都会先从机器学习开始学起,而要想顺利入门机器学习的相关知识,数学基础是非常关键的。
虽然人工智能对于数学的要求比较高,但是即使数学基础不好,也可以在学习人工智能技术的过程中,逐渐补齐自个的数学短板,在学习人工智能技术的初期,也并不会遇到非常复杂的数学问题,只需要具有一些线性代数、概率论的基础知识就可以了。
最后,人工智能技术的学习对于场景有比较高的要求,所以学习人工智能技术并不建议完全通过自学的方式来掌握,最好能够借助研发团队的实验和交流环境,来不断提升自身的研发能力。
我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。
如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我! |
|