开启辅助访问
 找回密码
 立即注册

Python人工智能——K-Means聚类算法

hsulun2000 回答数0 浏览数837
目录

2.2 针对大样本集的改进算法:Mini Batch K-Means
1 概述

(1)无监督学习



(2)聚类



(3)K-Mean均值算法



2 K-Mean均值算法

2.1 引入

步骤:

  • 设定 K 个类别的中心的初值;
  • 计算每个样本到 K个中心的距离,按最近距离进行分类;
  • 以每个类别中样本的均值,更新该类别的中心;
  • 重复迭代以上步骤,直到达到终止条件(迭代次数、最小平方误差、簇中心点变化率)。
from sklearn.cluster import KMeans  # 导入 sklearn.cluster.KMeans 类
import numpy as np

X = np.array([[1,2], [1,4], [1,0], [10,2], [10,4], [10,0]])
kmCluster = KMeans(n_clusters=2).fit(X)  # 建立模型并进行聚类,设定 K=2
print("聚类中心坐标:",kmCluster.cluster_centers_)  # 返回每个聚类中心的坐标
print("分类结果:",kmCluster.labels_)  # 返回样本集的分类结果
print("显示预测判断:",kmCluster.predict([[0, 0], [12, 3]]))  # 根据模型聚类结果进行预测判断
聚类中心坐标: [[10.  2.]
[ 1.  2.]]
分类结果: [1 1 1 0 0 0]
显示预测判断: [1 0]

Process finished with exit code 02.2 针对大样本集的改进算法:Mini Batch K-Means

对于样本集巨大的问题,例如样本量大于 10万、特征变量大于100,K-Means算法耗费的速度和内存很大。SKlearn 提供了针对大样本集的改进算法 Mini Batch K-Means,并不使用全部样本数据,而是每次抽样选取小样本集进行 K-Means聚类,进行循环迭代。Mini Batch K-Means 虽然性能略有降低,但极大的提高了运行速度和内存占用。
from sklearn.cluster import MiniBatchKMeans # 导入 .MiniBatchKMeans 类
import numpy as np
X = np.array([[1,2], [1,4], [1,0], [4,2], [4,0], [4,4],
              [4,5], [0,1], [2,2],[3,2], [5,5], [1,-1]])
# fit on the whole data
mbkmCluster = MiniBatchKMeans(n_clusters=3,batch_size=6,max_iter=10).fit(X)
print("聚类中心的坐标:",mbkmCluster.cluster_centers_) # 返回每个聚类中心的坐标
print("样本集的分类结果:",mbkmCluster.labels_)  # 返回样本集的分类结果
print("显示判断结果:样本属于哪个类别:",mbkmCluster.predict([[0,0], [4,5]]))  # 根据模型聚类结果进行预测判断
聚类中心的坐标: [[ 2.55932203  1.76271186]
[ 0.75862069 -0.20689655]
[ 4.20588235  4.5       ]]
样本集的分类结果: [0 0 1 0 0 2 2 1 0 0 2 1]
显示判断结果:样本属于哪个类别: [1 2]

Process finished with exit code 02.3 图像

from sklearn.cluster import kmeans_plusplus
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt

# Generate sample data
n_samples = 4000
n_components = 4

X, y_true = make_blobs(
    n_samples=n_samples, centers=n_components, cluster_std=0.60, random_state=0
)
X = X[:, ::-1]

# Calculate seeds from kmeans++
centers_init, indices = kmeans_plusplus(X, n_clusters=4, random_state=0)

# Plot init seeds along side sample data
plt.figure(1)
colors = ["#4EACC5", "#FF9C34", "#4E9A06", "m"]

for k, col in enumerate(colors):
    cluster_data = y_true == k
    plt.scatter(X[cluster_data, 0], X[cluster_data, 1], c=col, marker=".", s=10)

plt.scatter(centers_init[:, 0], centers_init[:, 1], c="b", s=50)
plt.title("K-Means++ Initialization")
plt.xticks([])
plt.yticks([])
plt.show()sklearn中的make_blobs的用法

3 案例

3.1 代码

#  -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
from sklearn.cluster import KMeans, MiniBatchKMeans

def main():
    # 读取数据文件
    file = pd.read_excel('K-Means.xlsx', header=0)  # 首行为标题行
    file = file.dropna()  # 删除含有缺失值的数据
    # print(file.dtypes)  # 查看 df 各列的数据类型
    # print(file.shape)  # 查看 df 的行数和列数
    print(file.head())

    # 数据准备
    z_scaler = lambda x:(x-np.mean(x))/np.std(x)  # 定义数据标准化函数
    dfScaler = file[['D1','D2','D3','D4','D5','D6','D7','D8','D9','D10']].apply(z_scaler)  # 数据归一化
    dfData = pd.concat([file[['地区']], dfScaler], axis=1)  # 列级别合并
    df = dfData.loc[:,['D1','D2','D3','D4','D5','D6','D7','D8','D9','D10']]  # 基于全部 10个特征聚类分析
    # df = dfData.loc[:,['D1','D2','D7','D8','D9','D10']]  # 降维后选取 6个特征聚类分析
    X = np.array(df)  # 准备 sklearn.cluster.KMeans 模型数据
    print("Shape of cluster data:", X.shape)

    # KMeans 聚类分析(sklearn.cluster.KMeans)
    nCluster = 4
    kmCluster = KMeans(n_clusters=nCluster).fit(X)  # 建立模型并进行聚类,设定 K=4
    print("Cluster centers:\n", kmCluster.cluster_centers_)  # 返回每个聚类中心的坐标
    print("Cluster results:\n", kmCluster.labels_)  # 返回样本集的分类结果

    # 整理聚类结果(太棒啦!)
    listName = dfData['地区'].tolist()  # 将 dfData 的首列 '地区' 转换为 list
    dictCluster = dict(zip(listName,kmCluster.labels_))  # 将 listName 与聚类结果关联,组成字典
    listCluster = [[] for k in range(nCluster)]
    for v in range(0, len(dictCluster)):
        k = list(dictCluster.values())[v]  # 第v个城市的分类是 k
        listCluster[k].append(list(dictCluster.keys())[v])  # 将第v个城市添加到 第k类
    print("\n聚类分析结果(分为{}类):".format(nCluster))  # 返回样本集的分类结果
    for k in range(nCluster):
        print("第 {} 类:{}".format(k, listCluster[k]))  # 显示第 k 类的结果

    return

if __name__ == '__main__':
    main()(1)python中apply函数
(2)Pandas中DataFrame数据合并、链接(concat、merge、join)
(3)Python pandas 中loc函数的意思及用法,及跟iloc的区别
(4)tolist函数 其他形式(数组或者矩阵等)转为列表形式
(5)利用zip函数将两个列表(list)组成字典(dict)
3.2 结果

地区    D1   D2   D3    D4   D5   D6     D7    D8    D9    D10
0  北京  5.96  310  461  1557  931  319  44.36  2615  2.20  13631
1  上海  3.39  234  308  1035  498  161  35.02  3052  0.90  12665
2  天津  2.35  157  229   713  295  109  38.40  3031  0.86   9385
3  陕西  1.35   81  111   364  150   58  30.45  2699  1.22   7881
4  辽宁  1.50   88  128   421  144   58  34.30  2808  0.54   7733
Shape of cluster data: (30, 10)
Cluster centers:
[[-3.04626787e-01 -2.89307971e-01 -2.90845727e-01 -2.88480032e-01
  -2.85445404e-01 -2.85283077e-01 -6.22770669e-02  1.12938023e-03
  -2.71308432e-01 -3.03408599e-01]
[ 4.44318512e+00  3.97251590e+00  4.16079449e+00  4.20994153e+00
   4.61768098e+00  4.65296699e+00  2.45321197e+00  4.02147595e-01
   4.22779099e+00  2.44672575e+00]
[ 1.52987871e+00  2.10479182e+00  1.97836141e+00  1.92037518e+00
   1.54974999e+00  1.50344182e+00  1.13526879e+00  1.13595799e+00
   8.39397483e-01  1.38149832e+00]
[ 4.17353928e-01 -6.60092295e-01 -5.55528420e-01 -5.50211065e-01
  -2.95600461e-01 -2.42490616e-01 -3.10454580e+00 -2.70342746e+00
   1.14743326e+00  2.67890118e+00]]
Cluster results:
[1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0]

聚类分析结果(分为4类):
第 0 类:['陕西', '辽宁', '吉林', '黑龙江', '湖北', '江苏', '广东', '四川', '山东', '甘肃', '湖南', '浙江', '新疆', '福建', '山西', '河北', '安徽', '云南', '江西', '海南', '内蒙古', '河南', '广西', '宁夏', '贵州', '青海']
第 1 类:['北京']
第 2 类:['上海', '天津']
第 3 类:['西藏']

Process finished with exit code 0
使用道具 举报
| 来自辽宁
当贝投影