开启辅助访问
 找回密码
 立即注册

什么是人工智能算法?

新人谦虚学 回答数3 浏览数596865
KpPtzPJp | 未知
你们说的都太复杂了,希望我的描述能让外行们看懂。
当前运用的人工智能的算法,在本质上就是输入x得到反馈y。
至于如何从x得到的y,我们可以列一个线性方程y = mx + b。
它表示是x和y的关系。只不过是从前我们学的是根据x求y,在人工智能领域是,知道输入x和输出y,要求出的是系数m和常数b。
线性回归


有监督学习就是持续输入大量的配对的x和y,调整系数m和常数b,让线性方程更好的匹配数据。这个方程永远不能以百分之百的准确率匹配x和y,但是它能被用来做预测。一旦你确定了一个可靠的函数,你输入x的值,变成得到一个正确率很高的y值。
即使复杂如阿尔法狗,它不过是得到了一个无比复杂的系数m,万变不离其宗,它的算法仍然能被表达为y = mx + b
聚类分析

有监督学习还可以被用来做分类,类似于把水从池子里分到桶里。例如,如果数据带有特点x,它进入一号桶;如果没有,它进入二号桶。在这种情况下,你仍然可能认为这是在用x预测y,只是在这里y不是数值而是类别。当然,分水的桶可以准备很多。
分类算法可以来过滤垃圾邮件,分析x光片的异常,确认案件的相关资料,为一个岗位选择合适的简历,甚至做market segmentation。
用Deepseek满血版问问看
回复
使用道具 举报
wxfjamdc | 未知
 决策树是一种树形结构,为人们提供决策依据,决策树可以用来回答yes和no问题,它通过树形结构将各种情况组合都表示出来,每个分支表示一次选择(选择yes还是no),直到所有选择都进行完毕,最终给出正确答案。
 如果你对统计学有所了解,那么你必定听说过线性回归。最小均方就是用来求线性回归的。如下图所示,平面内会有一系列点,然后我们求取一条线,使得这条线尽可能拟合这些点分布,这就是线性回归。这条线有多种找法,最小二乘法就是其中一种。最小二乘法其原理如下,找到一条线使得平面内的所有点到这条线的欧式距离和最小。这条线就是我们要求取得线。
 线性指的是用一条线对数据进行拟合,距离代表的是数据误差,最小二乘法可以看做是误差最小化。
  那么为什集成分类器要比单个分类器效果好呢?
  1.偏差均匀化:如果你将民主党与共和党的投票数算一下均值,可定会得到你原先没有发现的结果,集成学习与这个也类似,它可以学到其它任何一种方式都学不到的东西。
  2.减少方差:总体的结果要比单一模型的结果好,因为其从多个角度考虑问题。类似于股票市场,综合考虑多只股票可以要比只考虑一只股票好,这就是为什么多数据比少数据效果好原因,因为其考虑的因素更多。
  3.不容易过拟合。如果的一个模型不过拟合,那么综合考虑多种因素的多模型就更不容易过拟合了。
首要问题:“语言的选择”
摆在题主面前的首要问题是“入门”,所以我们需要在前人的基础上进行理解和应用。在这里我推荐Python,除了Python语法简洁灵活以外,目前人工智能或者机器学习库在Python语言上最为丰富和完善——是的,没有之一。
这里我想解释一下“库”的概念,目前语言的一个趋势就是提高工作效率,也即“拿来主义”,别人做好的东西你可以直接拿来用,单这并不是说你什么都不需要做了,而是这只是一个工具,单是理解如何使用工具就不是一个轻松的事情。
如果题主想从0开始自己写机器学习的工具,那么我不推荐,一般来说大多数人没有这个能力,也确实没有必要。
所谓【分类】,举个列子,就是人有男女性别之分,回答有正确错误之分,相貌有美丑之分;所谓【聚类】,你不能判断一个东西的具体类别而是说大致更接近什么,通俗来说就是更加模糊的分类,一个四不像的动物从概率来说更像什么;所谓【回归】,针对一系列连续的值,比如明天的天气是20℃还是21或者30这样、或者小明数学成绩考了60分还是72分。
明白了问题的类型,我们才能选择特定的算法:针对【分类】问题,可以选择KNN算法、决策树、朴素贝叶斯、支持向量机、逻辑斯蒂回归;针对【聚类】可以使用K-mean算法;针对【回归】问题,可以选决策树、朴素贝叶斯、支持向量机。(对的,我没有写错,决策树、朴素贝叶斯、支持向量机既可以分类也可以回归)值得一提得是,逻辑斯蒂回归虽然是回归命名,但却只能用于分类。
回复
使用道具 举报
asdlz | 未知
人工智能是个大概念,包含的方向和内容很多。可以说只要有点智能的都可以叫人工智能,想图像识别,视觉导航,神经网络,控制领域模糊控制等等,目前他本身并无明确的发展方向,分之也多很难说要从哪上手。选择你自己喜欢的一个方向就好。个人感觉目前的技术里人工智能还很远,有过度炒作,泡沫化的趋势。字面意思人工智能,什么叫人工智能?顾名思义就是模仿人脑的思维。现在各行各业,为了炒作自己的热度,只要有点技术含量的都冠以人工智能,这种挂羊头卖狗肉风气值得警惕。发展人工智能是好事,但是我们必须以严谨的心态实事求是的做下去才行。

回复
使用道具 举报
快速回复
您需要登录后才可以回帖 登录 | 立即注册

当贝投影