开启辅助访问
 找回密码
 立即注册

人工智能包括哪些技术?

花茶女人 回答数5 浏览数969
人工智能包括哪些技术?
使用道具 举报
| 来自北京
gdoy | 来自北京
1、大数据
大数据,或者称之为巨量资料,指的是需要全新的处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。也就是说,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。大数据是AI智能化程度升级和进化的基础,拥有大数据,AI才能够不断的进行模拟演练,不断向着真正的人工智能靠拢。
2、计算机视觉
计算机视觉顾名思义,就是让计算机具备像人眼一样观察和识别的能力,更进一步的说,就是指用摄像机和电脑代替人眼对目标进行识别、跟踪和测量,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。
3、语音识别
语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高新技术。语音识别技术主要包括特征提取技术、模式匹配准则及模型训练技术三个方面。语音识别是人机交互的基础,主要解决让机器听清楚人说什么的难题。人工智能目前落地最成功的就是语音识别技术。
语音识别目前主要应用在车联网、智能翻译、智能家居、自动驾驶方面。
4、自然语言处理
自然语言处理大体包括了自然语言理解和自然语言生成两个部分,实现人机间自然语言通信意味着要使计算机既能理解自然语言文本的意义,也能以自然语言文本来表达给定的意图、思想等,前者称为自然语言理解,后者称为自然语言生成。自然语言处理的终极目标是用自然语言与计算机进行通信。
5、机器学习
机器学习就是让机器具备人一样学习的能力,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是人工智能的核心。
机器学习已经有了十分广泛的应用,例如:数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人运用。

回复
使用道具 举报
minying | 来自北京
举个例子,基于深度残差收缩网络的故障诊断技术。
基于深度残差收缩网络的故障诊断 Deep Residual Shrinkage Networks for Fault Diagnosis
回复
使用道具 举报
alanxzg | 来自上海
从学科的角度来看,人工智能是一个典型的交叉学科,涉及到哲学、数学、计算机、控制学、神经学、经济学和语言学等学科,所以人工智能不仅知识量大,而且难度高。
关于人工智能的定义存在两个大的方向,一个是“像人一样思考和像人一样行动”,另一个是“合理的思考和合理的行动”,目前在研究领域更倾向于第二个方向,也就是追求智能体的合理性。当然,这仅仅是当前的研究出发点,未来也许会有新的方向性要求(或者叫做人性)。
从大的技术组成体系来看,人工智能技术涉及到物联网、云计算、大数据、边缘计算等内容,其中物联网是目前智能体一个重要的落地应用场景,物联网场景的搭建能够全面促进智能体的落地应用,目前车联网被看成是智能体全面落地应用的一个重要突破口,所以目前诸多科技公司都在布局相关领域(尤其是自动驾驶)。
人工智能的发展需要数据、算力和算法三大支撑因素,云计算提供了算力支撑(同时也是落地场景之一),而大数据则提供了数据的来源,随着大数据和云计算的发展,人工智能的发展也会在很大程度上得到促进。
从研究方向上来看,目前人工智能领域的研究方向包括机器学习、自然语言处理、知识表示、自动推理、计算机视觉和机器人学,目前除了机器学习(深度学习)之外,自然语言处理和计算机视觉方向也比较热。
当前虽然部分高校在本科阶段开设了人工智能专业,但是人工智能领域的人才培养还是以研究生教育为主,所以如果想往人工智能方向发展,可以考虑读一下研究生。
最后,近两年算法岗位的就业情况并不理想,岗位数量相对较少,研究生可以考虑从大数据相关岗位开始做起。
我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。
如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!
回复
使用道具 举报
dengjiefeng | 未知
人工智能的基础理论科学包括计算机科学、逻辑学、生物学、心理学及哲学等众多学科,人工智能技术核心具体包括:
1、计算机视觉
人们认识世界, 91%是通过视觉来实现。同样, 计算机视觉的最终目标就是让计算机能够像人一样通过视觉来认识和了解世界, 它主要是通过算法对图像进行识别分析, 目前计算机视觉最广泛的应用是人脸识别和图像识别。相关技术具体包括图像分类、目标跟踪、语义分割。
2、 机器学习
机器学习的基本思想是通过计算机对数据的学习来提升自身性能的算法。机器学习中需要解决的最重要的4类问题是预测、聚类、分类和降维。机器学习按照学习方法分类可分为:监督学习、无监督学习、半监督学习和强化学习。
3、自然语言处理
自然语言处理 (NLP) [30]是指计算机拥有识别理解人类文本语言的能力, 是计算机科学与人类语言学的交叉学科。自然语言是人与动物之间的最大区别, 人类的思维建立在语言之上, 所以自然语言处理也就代表了人工智能的最终目标。机器若想实现真正的智能自然语言处理是必不可少的一环。自然语言处理分为语法语义分析、信息抽取、文本挖掘、信息检索、机器翻译、问答系统和对话系统7个方向。自然语言处理主要有5类技术, 分别是分类、匹配、翻译、结构预测及序列决策过程。
4、语音识别
现在人类对机器的运用已经到了一个极高的状态, 所以人们对于机器运用的便捷化也有了依赖。采用语言支配机器的方式是一种十分便捷的形式。语音识别技术是将人类的语音输入转换为一种机器可以理解的语言, 或者转换为自然语言的一种过程。
参考文献:崔雍浩 商聪 陈锶奇 郝建业.人工智能综述:AI的发展.无线电通信技术[J].2019,45(03),225-231
详情可查看
人工智能综述:AI的发展 - 中国知网
回复
使用道具 举报
futurewwww | 来自北京
谢邀
首先我们要知道人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。说起人工智能我们大家都很熟悉,各种人工智能概念,AI概念层不出穷,仔细想来无外乎智能音箱、智能打印机、智能售卖机等等诸如此类似乎没多少“智能”,和我们脑海中的“AI印象”,如:终结者、机器人、阿尔法狗、自动驾驶等技术大相径庭。目前,普遍认为人工智能的研究始于1956年达特茅斯会议,早期人工智能研究中,如何定义人工智能是个喋喋不休的问题,但基调始终是:像人一样决策、像人一样行动、理性的决策、理性的行动等研究方向。人工智能70年来的研究过程中,早期受制于计算机运算速度和存储的限制,人工智能的研究进展缓慢。06年深度学习技术突破到2016年阿尔法狗打败李世石,人工智能的概念世人皆知,那么人工智能主要由哪几部分构成呢?
一、采集:传感器—信息采集
二、处理:CPU—各种算法、架构、系统
三、输出:像人一样行动
四、存储
NORFLASH、NANDFLASH、ONENANDFLASH、DDR1、DDR2、DDR3----。存储内容的压缩、存储、解压缩。
五、显示:
虚拟现实VR、增强型虚拟现实AR。
六、通信
超级宽带。万物互联。
七、电源
医疗器械专用开关电源
工业控制专业开关电源
车载&无人驾驶&无人机专用开关电源。
人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。2017年12月,人工智能入选“2017年度中国媒体十大流行语”。对于想要进入人工智能领域的小白来讲:一开始就接触到人工智能的研究是不现实的,不妨试着学习嵌入式、Python、物联网等和人工智能息息相关的基础领域,先学好基本后再一步步通向人工智能学习之路是个不错的选择。
回复
使用道具 举报
快速回复
您需要登录后才可以回帖 登录 | 立即注册

当贝投影