前言
做了一些小项目,用的技术和技巧会比较散比较杂,写一台小品文记录一下,帮助熟悉。
需求:经常在腾讯视频上看影片,在影片库里有一台"豆瓣好评"板块。我一般会在这个条目下面挑影片。但是影片很多,又缺乏索引,只能不停地往下来,让js加载更多的条目。然而前面的看完了,每次找新的片就要拉很久。所以用爬虫将"豆瓣好评"里的影片都爬下来整理到一台表中,省事选片。
PS:如有需要Python学习资料的小伙伴可以加下方的群去找免费管理员领取
可以免费领取源码、项目实战视频、PDF文件等
项目地址:
https://github.com/yangrq1018/vqq-douban-film依赖
需要如下Python包:
- requests
- bs4 - Beautiful soup
- pandas
就这些,不需要复杂的自动化爬虫架构,简单而且常用的包就够了。
爬取影片信息
首先观察影片频道,发现是异步加载的。可以用Firefox(Chrome也行)的inspect中的network这个tab来筛选查看可能的api接口。很快发现接口的URL是这个格式的:
base_url = 'https://v.qq.com/x/bu/pagesheet/list?_all=1&append=1&channel=movie&listpage=2&offset={offset}&pagesize={page_size}&sort={sort}'其中 offset是请求页开始的位置, pagesize是每页请求的数量, sort是类型。在这里 sort=21指我们需要的"豆瓣好评"类型。pagesize不能大于30,大于30也只会返回三十个元素,低于30会返回指定数量的元素。
# 让Pandas完整到处过长的URL,后面会需要
pd.set_option('display.max_colwidth', -1)
base_url = 'https://v.qq.com/x/bu/pagesheet/list?_all=1&append=1&channel=movie&listpage=2&offset={offset}&pagesize={page_size}&sort={sort}'
# 豆瓣最佳类型
DOUBAN_BEST_SORT = 21
NUM_PAGE_DOUBAN = 167写一台小小的循环就可以发现,豆瓣好评这个类型总共有167页,每页三十个元素。
我们使用 requests这个库来请求网页, get_soup会请求第 page_idx页的元素,用 Beautifulsoup来解析 response.content,生成一台类似 DOM,可以很省事地查找我们需要的element的对象。我们返回一台 list。每个影片条目是包含在一台叫list_item的 div里的,所以写一台函数来帮助我们提取所有的这样的 div。
def get_soup(page_idx, page_size=30, sort=DOUBAN_BEST_SORT):
url = base_url.format(offset=page_idx * page_size, page_size=page_size, sort=sort)
res = requests.get(url)
soup = bs4.BeautifulSoup(res.content.decode('utf-8'), 'lxml')
return soup
def find_list_items(soup):
return soup.find_all('div', class_='list_item')我们遍历每一页,返回一台含有所有的被 bs4过的条目元素的HTML的 list。
def douban_films():
rel = []
for p in range(NUM_PAGE_DOUBAN):
print('Getting page {}'.format(p))
soup = get_soup(p)
rel += find_list_items(soup)
return rel这是其中的一部影片的HTML代码:
<div __wind=&#34;&#34; class=&#34;list_item&#34;>
<a class=&#34;figure&#34; data-float=&#34;j3czmhisqin799r&#34; href=&#34;https://v.qq.com/x/cover/j3czmhisqin799r.html&#34; tabindex=&#34;-1&#34; target=&#34;_blank&#34; title=&#34;霸王别姬&#34;>
<img alt=&#34;霸王别姬&#34; class=&#34;figure_pic&#34; onerror=&#34;picerr(this,&#39;v&#39;)&#34; src=&#34;//puui.qpic.cn/vcover_vt_pic/0/j3czmhisqin799rt1444885520.jpg/220&#34;/>
<img alt=&#34;VIP&#34; class=&#34;mark_v&#34; onerror=&#34;picerr(this)&#34; src=&#34;//i.gtimg.cn/qqlive/images/mark/mark_5.png&#34; srcset=&#34;//i.gtimg.cn/qqlive/images/mark/mark_5@2x.png 2x&#34;/>
<div class=&#34;figure_caption&#34;></div>
<div class=&#34;figure_score&#34;>9.6</div>
</a>
<div class=&#34;figure_detAIl figure_detail_two_row&#34;>
<a class=&#34;figure_title figure_title_two_row bold&#34; href=&#34;https://v.qq.com/x/cover/j3czmhisqin799r.html&#34; target=&#34;_blank&#34; title=&#34;霸王别姬&#34;>霸王别姬</a>
<div class=&#34;figure_desc&#34; title=&#34;主演:张国荣 张丰毅 巩俐 葛优&#34;>主演:张国荣 张丰毅 巩俐 葛优</div>
</div>
<div class=&#34;figure_count&#34;><svg class=&#34;svg_icon svg_icon_play_sm&#34; height=&#34;16&#34; viewbox=&#34;0 0 16 16&#34; width=&#34;16&#34;><use xlink:href=&#34;#svg_icon_play_sm&#34;></use></svg>4671万</div>
</div>不难发现,霸王别姬这部影片,名称、播放地址、封面、评分、主演,是否需要会员和播放量都在这个 div中。在ipython这样的interactive环境中,可以省事地找出如何用bs来提取他们的方法。我使用的一台技巧是,可以打开一台 spyder.py文件,在里面编写需要的函数,将ipython的自动重载模组的选项打开,然后就可以在console里debug之后将代码复制到文件里,然后ipython中的函数也会相应的更新。这样的好处是会比在ipython中改动代码省事许多。具体如何打开ipython的自动重载:
%load_ext autoreload
%autoreload 2 # Reload all modules every time before executing Python code
%autoreload 0 # Disable automatic reloading这个 parse_films函数用bs中的两个常用方法提取信息:
因为豆瓣的API已经关闭了检索功能,爬虫又会被反爬虫检测到,本来想检索到豆瓣的评分添加上去这个功能就放弃了。
OrderedDict可以接受一台由(key, value)组成的list,然后key的顺序会被记住。这个在之后我们导出为pandas DataFrame的时候很有用。
def parse_films(films):
&#39;&#39;&#39;films is a list of `bs4.element.Tag` objects&#39;&#39;&#39;
rel = []
for i, film in enumerate(films):
title = film.find(&#39;a&#39;, class_=&#34;figure_title&#34;)[&#39;title&#39;]
print(&#39;Parsing film %d: &#39; % i, title)
link = film.find(&#39;a&#39;, class_=&#34;figure&#34;)[&#39;href&#39;]
img_link = film.find(&#39;img&#39;, class_=&#34;figure_pic&#34;)[&#39;src&#39;]
# test if need VIP
need_vip = bool(film.find(&#39;img&#39;, class_=&#34;mark_v&#34;))
score = getattr(film.find(&#39;div&#39;, class_=&#39;figure_score&#39;), &#39;text&#39;, None)
if score: score = float(score)
cast = film.find(&#39;div&#39;, class_=&#34;figure_desc&#34;)
if cast:
cast = cast.get(&#39;title&#39;, None)
play_amt = film.find(&#39;div&#39;, class_=&#34;figure_count&#34;).get_text()
# db_score, db_link = search_douban(title)
# Store key orders
dict_item = OrderedDict([
(&#39;title&#39;, title),
(&#39;vqq_score&#39;, score),
# (&#39;db_score&#39;, db_score),
(&#39;need_vip&#39;, need_vip),
(&#39;cast&#39;, cast),
(&#39;play_amt&#39;, play_amt),
(&#39;vqq_play_link&#39;, link),
# (&#39;db_discuss_link&#39;, db_link),
(&#39;img_link&#39;, img_link),
])
rel.append(dict_item)
return rel导出
最后,我们调用写好的函数,在主程序中运行。
被解析好,list of dictionaries格式的对象,可以直接传给DataFrame的constructor。按照评分排序,最高分在前面,然后将播放链接转换成HTML的链接标签,更加美观而且可以直接打开。
注意,pandas生成的csv文件一直和excel有兼容性问题,在有中文字符的时候会乱码。解决方法是选择utf_8_sig这个encoding,就可以让excel正常解码了。 Pickle是一台Python十分强大的serialization库,可以保存Python的对象为文件,再从文件中加载Python的对象。我们将我们的DataFrame保存为 .pkl。调用 DataFrame的 to_html方法保存一台HTML文件,注意要将 escape 设置为False不然超链接不能被直接打开。
if __name__ == &#39;__main__&#39;:
df = DataFrame(parse_films(douban_films()))
# Sorted by score
df.sort_values(by=&#34;vqq_score&#34;, inplace=True, ascending=False)
# Format links
df[&#39;vqq_play_link&#39;] = df[&#39;vqq_play_link&#39;].apply(lambda x: &#39;<a href=&#34;{0}&#34;>Film link</a>&#39;.format(x))
df[&#39;img_link&#39;] = df[&#39;img_link&#39;].apply(lambda x: &#39;<img src=&#34;{0}&#34;>&#39;.format(x))
# Chinese characters in Excel must be encoded with _sig
df.to_csv(&#39;vqq_douban_films.csv&#39;, index=False, encoding=&#39;utf_8_sig&#39;)
# Pickle
df.to_pickle(&#39;vqq_douban_films.pkl&#39;)
# HTML, render hyperlink
df.to_html(&#39;vqq_douban_films.html&#39;, escape=False)项目管理
代码部分就是这样。那么写完了代码,就要把它归档保存,以便于分析。选择放在Github上。
那么,其实Github是提供了一台命令行工具的(不是 git,是 git的一台扩展),叫做 hub。macOS用户可以这样安装
brew install hubhub有许多比 git更简练的语法,我们这里主要用
hub create -d &#34;Create repo for our proj&#34; vqq-douban-film来直接从命令行创建repo,是不是很酷!根本不用打开浏览器。然后可能会被提示在Github上登记一台你的SSH公钥(验证权限),如果没有的话用 ssh-keygen生成一台就好了,在Github的设置里把 .pub的内容复制进去。
项目目录里,可能会有 __pycache__和 .DS_Store这样你不想track的文件。手写一台 .gitignore又太麻烦,有没有工具呢,肯定有的!Python有一台包
pip install git-ignore
git-ignore python # 产生一台python的template
# 手动把.DS_Store加进去本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理。
作者:yangrq1018
https://segmentfault.com/a/1190000019421255 |